Equivariance and Generalized Inference in Two-Sample Location-Scale Families
نویسندگان
چکیده
We are interested in-typical Behrens-Fisher problem in general location-scale families. We present a method of constructing generalized pivotal quantity GPQ and generalized P value GPV for the difference between two location parameters. The suggested method is based on the minimum risk equivariant estimators MREs , and thus, it is an extension of the methods based onmaximum likelihood estimators and conditional inference, which have been, so far, applied to some specific distributions. The efficiency of the procedure is illustrated by Monte Carlo simulation studies. Finally, we apply the proposed method to two real datasets.
منابع مشابه
Classical and Bayesian Inference in Two Parameter Exponential Distribution with Randomly Censored Data
Abstract. This paper deals with the classical and Bayesian estimation for two parameter exponential distribution having scale and location parameters with randomly censored data. The censoring time is also assumed to follow a two parameter exponential distribution with different scale but same location parameter. The main stress is on the location parameter in this paper. This parameter has not...
متن کاملInference for the Type-II Generalized Logistic Distribution with Progressive Hybrid Censoring
This article presents the analysis of the Type-II hybrid progressively censored data when the lifetime distributions of the items follow Type-II generalized logistic distribution. Maximum likelihood estimators (MLEs) are investigated for estimating the location and scale parameters. It is observed that the MLEs can not be obtained in explicit forms. We provide the approximate maximum likelihood...
متن کاملLecture 12 — November 3 Lecturer : Lester Mackey Scribe
In the first part of the course, we focused on optimal inference in the setting of point estimation (see Figure 12.2). We formulated this problem in the framework of decision theory and focused on finite sample criteria of optimality. We immediately discovered that uniform optimality was seldom attainable in practice, and thus, we developed our theory of optimality along two lines: constraining...
متن کاملBayesian Inference for Spatial Beta Generalized Linear Mixed Models
In some applications, the response variable assumes values in the unit interval. The standard linear regression model is not appropriate for modelling this type of data because the normality assumption is not met. Alternatively, the beta regression model has been introduced to analyze such observations. A beta distribution represents a flexible density family on (0, 1) interval that covers symm...
متن کاملComparing Mean Vectors Via Generalized Inference in Multivariate Log-Normal Distributions
Abstract In this paper, we consider the problem of means in several multivariate log-normal distributions and propose a useful method called as generalized variable method. Simulation studies show that suggested method has a appropriate size and power regardless sample size. To evaluation this method, we compare this method with traditional MANOVA such that the actual sizes of the two methods ...
متن کامل